


MICRODUCT, DIELECTRIC CENTRAL LOOSE TUBE FO CABLE A-DQ(ZN)2Y 24 E9/125 G657A1

CABLE DESCRIPTION – APPLICATIONS

IEC 60794-3 / IEC 60794-5

Loose tube, outdoor, fully dielectric FO cable with **very small outer diameter** suitable for air-blown installation in microduct systems. The layer of the reinforcing aramide yarns provides safer installation and operation conditions making them suitable also for indoor installation by drawing.

CABLE DESIGN

YS	TMK	DATE	DETAILED	APPROVED			
1322/17	291/17	10/08/2017	E. CHATZISTAMOU	A. BETKAS			
Page 1	Rev. 0	FO CABLE ENGINEERING DEPARTMENT					

IEC 60794-3 / IEC 60794-5

MICRODUCT, DIELECTRIC CENTRAL LOOSE TUBE FO CABLE A-DQ(ZN)2Y 24 E9/125 G657A1

SHEATH MARKING

The following information is printed (ink injection method) in contrasting colour, on outer jacket, every one (1) meter:

"CABLEL - 2017 - A-DQ(ZN)2Y 24 E9/125 G.657A1 - length marking m"

Other or additional data can be printed on outer jacket if requested.

PACKING

The cables are delivered in non-returnable plywood reels or wooden drums suitable for safe transportation, storage and installation. Both cable ends are accessible for testing and tightly sealed with shrink-dawn end caps to prevent ingress of moisture. Cable type, customer, drum no, cable length, net and gross weight etc. are tagged on both drum flanges according to customer requirements.

Cable length per drum: 4000m, $6000m \pm 5\%$.

Any particular requirements about packing, drum marking, cable length per drum can be provided if requested.

QUALITY CONTROL

All cables are quality tested in every stage of manufacturing procedure (raw materials receive, fiber colouring, fiber buffering, stranding, final cable, packing) to ensure a product of the highest quality level.

Detailed routine test reports (OTDR - attenuation in dB/km) can be delivered for all fibers, for all drums ordered.

Especially, for this cable category (small diameter duct FO cables) a strict measuring procedure is adopted to ensure that the cable overall diameter complies with the specified limit allover across the length of the cable.

BASIC CHARACTERISTICS OF OPTICAL FIBERS							
SINGLE-MODE OPTICAL FIBERS E9/125 ITU-T G657A1							
Parameter	Values						
Cladding diameter	$125.0\pm0.7~\mu\mathrm{m}$						
Coating diameter (non-colored)	$245 \pm 5 \ \mu m$						
Core-Cladding concentricity error	≤ 0.5 μm						
Cladding non-circularity	$\leq 0.7 \%$						
Coating-Cladding concentricity error	≤ 12 μm						
Mode field diameter at 1310 nm	$9.2\pm0.4~\mu m$						
Mode field diameter at 1550 nm	$10.4 \pm 0.5 \ \mu m$						
Attenuation coefficient at 1310 nm	$\leq 0.36^* \text{ dB/km}$						
Attenuation coefficient at 1383 nm	$\leq 0.33^* dB/km$						
Attenuation coefficient at 1550 nm	$\leq 0.23^* dB/km$						
Attenuation coefficient at 1625 nm	$\leq 0.25^* \text{ dB/km}$						
Attenuation discontinuity at 1310nm & 1550 nm	$\leq 0.05 \text{ dB}$						
Cable cut-off wavelength λ_{cc}	$\lambda_{cc} \le 1260 \text{ nm}$						
Chromatic dispersion coefficient at 1285-1330 nm	$\leq 3.0 \text{ ps/(nm \cdot km)}$						
Chromatic dispersion coefficient at 1550 nm	$\leq 18 \text{ ps/(nm \cdot km)}$						
Chromatic dispersion coefficient at 1625nm	$\leq 22 \text{ ps/(nm \cdot km)}$						
Zero-dispersion wavelength λ_o	$1304 < \lambda_0 < 1324 \text{ nm}$						
Zero-dispersion slope S _o	$\leq 0.092 \text{ ps/(nm^2 \cdot km)}$						
Link design value PMD _Q	$\leq 0.04 \text{ ps/}\sqrt{\text{km}}$						
Proof test	\geq 1% (100 kpsi or 0.7 GPa)						
*: cabled values							

YS	TMK	DATE	DETAILED	APPROVED			
1322/17	291/17	10/08/2017	E. CHATZISTAMOU	A. BETKAS			
Page 2	Rev. 0	FO CABLE ENGINEERING DEPARTMENT					